Two different charge separation pathways in photosystem II.
نویسندگان
چکیده
Charge separation is an essential step in the conversion of solar energy into chemical energy in photosynthesis. To investigate this process, we performed transient absorption experiments at 77 K with various excitation conditions on the isolated Photosystem II reaction center preparations from spinach. The results have been analyzed by global and target analysis and demonstrate that at least two different excited states, (Chl(D1)Phe(D1))* and (P(D1)P(D2)Chl(D1))*, give rise to two different pathways for ultrafast charge separation. We propose that the disorder produced by slow protein motions causes energetic differentiation among reaction center complexes, leading to different charge separation pathways. Because of the low temperature, two excitation energy trap states are also present, generating charge-separated states on long time scales. We conclude that these slow trap states are the same as the excited states that lead to ultrafast charge separation, indicating that at 77 K charge separation can be either activation-less and fast or activated and slow.
منابع مشابه
A multi-pathway model for photosynthetic reaction center.
Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII R...
متن کاملEnergy-transfer and charge-separation pathways in the reaction center of photosystem II revealed by coherent two-dimensional optical spectroscopy.
The excited state dynamics and relaxation of electrons and holes in the photosynthetic reaction center of photosystem II are simulated using a two-band tight-binding model. The dissipative exciton and charge carrier motions are calculated using a transport theory, which includes a strong coupling to a harmonic bath with experimentally determined spectral density, and reduces to the Redfield, th...
متن کاملHow exciton-vibrational coherences control charge separation in the photosystem II reaction center.
In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-v...
متن کاملPathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption.
We model the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in combination with different charge transfer schemes have been compared using a simultaneous fit of the absorption, linear dichroism, circular dichroism, st...
متن کاملNew and unexpected routes for ultrafast electron transfer in photosynthetic reaction centers.
In photosynthetic reaction centers, the excitation with light leads to the formation of a charge separated state across the photosynthetic membrane. For the reaction center of purple non-sulphur bacteria, it was previously generally assumed that this primary charge separation could only start with the excitation of the so-called special pair of bacteriochlorophyll molecules located in the heart...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 49 20 شماره
صفحات -
تاریخ انتشار 2010